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KEYWORDS Abstract The study aimed to analyze the single-cell transcriptomes of immune cells in juve-
Cell-cell nile idiopathic arthritis (JIA) patients to understand the cellular heterogeneity within the im-
communication; mune system. Peripheral blood samples from fourteen JIA patients and four healthy individuals
Immune cell; were subjected to single-cell RNA sequencing. Various subtypes of JIA were included in the pa-
Juvenile idiopathic tient cohort. Functional analyses, such as pseudotime trajectories and cell communication
arthritis; studies, were conducted to uncover immune cell changes in JIA patients. Results showed dis-
Pseudotimetraj rupted interferon and acute inflammatory responses in most cell types of JIA patients, with
ectories; particularly intense responses in systemic JIA (sJIA) patients versus non-sJIA patients. Pseudo-
Single-cell RNA time analysis of CD4" T, CD8" T, B, and myeloid cells revealed that the functions of each cyto-
sequencing kine production, cytotoxicity, and the processing and presentation of antigens were

progressively strengthened, while the regulation of nuclear factor kappa B (NF-«B)-related
pathways was weaker in CD4" T and CD8" T cells than in non-JIA. Reclustering analysis of
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myeloid cells highlighted interferon-related functions predominantly in non-classical mono-
cytes of sJIA patients. Additionally, cell communication analysis identified unique ligand
—receptor pairs in sJIA, suggesting potential roles in disease progression. In conclusion, inter-
feron disorders are evident across various immune cell types in JIA patients, with stronger re-
sponses observed in sJIA patients. The ligand—receptor pairs involving migration inhibitory
factor (MIF) and CXCR7/CD44 may contribute to differing joint symptoms between sJIA and
non-sJIA patients. Moreover, non-classical monocytes and the CXCR2 receptor in MIF signaling
may play crucial roles in sJIA progression.

© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Introduction

Juvenile idiopathic arthritis (JIA) is not a distinct ailment
but rather a term encompassing several types of arthritis of
unknown origin. It persists for a duration of >6 weeks and
typically emerges before the age of 16."2 In the late 1990s,
the International League Against Rheumatism (ILAR) clas-
sified JIA into seven types according to the signs and
symptoms seen in the first six months of the disorder.>* The
categories were systemic arthritis (sJIA), rheumatoid fac-
tor-negative polyarthritis (RF~ pJIA), rheumatoid factor-
positive polyarthritis (RF* pJIA), oligoarthritis (oJIA), and
enthesitis-related arthritis (ERA), as well as psoriatic and
undifferentiated arthritis. Given the rarity of the last two
subtypes in clinical practice, our study collectively refers to
RF~ pJIA, RF' pJIA, oJIA, and ERA as non-sJIA.

Apart from systemic JIA (sJIA), most studies on the ge-
netics and immunology of the disease have focused on the
broad JIA population. Comprehensive analyses of studies on
the pathogenesis of JIA have shown that, despite differ-
ences, it is possible to group most of the JIA categories, with
sJIA being the notable exception.’® This holistic approach
emphasizes features, particularly in pathways, common to
the different JIA types, through the investigation of inter-
action networks rather than examining isolated immune
factors. Although the pathophysiology of JIA is not fully un-
derstood, it appears that disruption of the equilibrium be-
tween regulatory and effector immune cells induced by both
genetic and environmental factors is involved.

It appears that the induction and persistence of JIA are
primarily driven by elements within the adaptive immune
system, pointing to the significance of consistent and
chronic immune responses. Among these components,
effector T cells are closely involved in JIA pathogenesis.
Indications of potentially pathogenic antigens include the
oligoclonality observed in specific T cell receptor subsets
and in an elevated inflammatory response, often linked to
the activity of the disease. These responses are fuelled by a
diverse array of antigens originating from various sources,
sharing availability, and potentially experiencing over-
expression within inflamed microenvironments.”'?

Accumulating evidence indicates the metabolic resil-
ience and immune suppression resistance of effector T cell
function, contributing to a self-reverberating and ampli-
fying immune process. T cell subsets with similar T cell
receptor repertoires, degrees of activation, and functional
and immunological phenotypes, are observed both in the

inflamed synovia and peripheries of individuals with active
disease. These subsets, irrespective of their similarities,
have both regulatory and effector properties. This duality
suggests a certain plasticity in the function that may be
influenced by microenvironmental factors and suggests that
an understanding of the processes involved may be crucial
for unraveling the precise pathogenetic mechanisms and
optimizing therapeutic interventions.'?~"°

B cells, together with T cells, are closely involved in
adaptive immune functions contributing to the pathogenesis
of JIA. B cells are known to generate autoantibodies,
including antinuclear antibodies and rheumatoid factors,
both of which are significant in the diagnosis of JIA.'®!”
Despite numerous hypotheses and extensive research, there
is no conclusive evidence to establish the primary involve-
ment of autoantibodies in JIA pathogenesis. Notably, B cells
are associated with the presentation of lipid and peptide
antigens, inducing both pro- and anti-inflammatory cyto-
kines. Emphasizing these characteristics is crucial, as they
may contribute to the enhancement of aberrant immune
function in JIA." B cells, in contrast to dendritic cells, lack
the array of costimulatory molecules crucial for modulating
T cell responses, thus potentially leading to abnormal acti-
vation of T cells. Additionally, B cells can produce chemo-
kines and cytokines directly influencing the inflammatory
process. Collectively, these immune cells appear to be
closely linked with JIA pathogenesis and may thus offer
novel therapeutic targets.'®

The role of innate immunity is paramount in mediating
and sustaining autoimmune damage.'®"® High-dimensional
approaches have revealed notable abnormalities relative to
controls in the functions and phenotypes of different types
of innate immune cells, such as dendritic cells, natural
killer cells, neutrophils, and macrophages.?>?' Many of
these cells, such as neutrophils, tend to gather at sites of
inflammation, possibly exacerbating the autoimmune
response. Furthermore, microRNAs and acellular sub-
stances have been observed to contribute to JIA
pathophysiology.?%?'

To date, no comprehensive single-cell sequencing
studies of the JIA subtypes have been performed. Here,
single-cell RNA sequencing was used to comprehensively
evaluate immune activity in peripheral blood mononuclear
cells from patients diagnosed with primary JIA. The findings
of this high-resolution, single-cell, transcriptomic analysis
will enhance the understanding of the immune response,
both pathogenic and protective, in JIA progression.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Juvenile idiopathic arthritis3

Methods and materials
Patient cohort

Three cases were obtained from the Gene Expression
Omnibus (GEO) database, specifically GSE168732. The study
cohort comprised fourteen patients diagnosed with JIA,
alongside a single individual serving as a healthy control
(HC). The recruitment of participants took place at the
Children’s Hospital of Chongging Medical University. The
participants were classified into five clinical groups,
namely, patients with sJIA, RF~ pJIA, RF' pJIA, oJIA, and
ERA, as defined by the ILAR criteria. Ethical approval of the
protocol was granted by the Ethics Committee of the Chil-
dren’s Hospital of Chongqing Medical University (file hum-
ber: 2022 No. 52). Prior to sample collection, informed
consent was provided by both pediatric patients and their
legal guardians.

Single-cell suspension preparation and single-cell
RNA sequencing

Peripheral blood mononuclear cells were speedily isolated
from 14 patients diagnosed with primary JIA and one con-
trol within 6 h of venous blood extraction. The cell viability
surpassed 90% in each sample. The cells were cry-
opreserved at —80 °C until further use.

Cell sorting was performed in phosphate buffer saline
with 0.05% bovine serum albumin according to the
10 x Genomics protocol. The time interval between prep-
aration and loading on the 10 x Chromium controller was
less than 2 h. Cells were counted and their viability was
assessed microscopically with trypan blue, with viability
>85% used as the criterion for sequencing.

Library construction was undertaken with the Single Cell
3’ Library Kit V2 from 10 x Genomics. Droplet sequencing
was used to obtain the transcriptomic profiles of the cells,
according to the 10 x Genomics protocol. The cDNA li-
braries were sequenced with paired-end reads, on an Illu-
mina NovaSeq 6000 system.

Single-cell RNA sequencing data processing

Raw expression matrices were produced for all samples
using CellRanger (v.7.2.0) with the human genome assem-
bly GRCh38. After output filtering, the matrices were
analyzed using the Seurat 4.3 package (v.4.3.0) in R
(v.4.3.0). Genes expressed in a proportion of over 0.1% of
the data and cells with more than 300 genes were selected
for further analyses.

After excluding poor-quality cells, the expression
matrices were normalized using the function Normal-
izeData. The FindVariableFeatures function was used to
determine 2000 features with high levels of cell-to-cell
variation and the RunPCA function with default parameters
was used for reducing the dataset dimensionalities after
the generation of linear-transformed scaled data using the
function ScaleData.

Additional functions, namely, ElbowPlot, JackStrawPlot,
and DimHeatmap, were used for determining the true di-
mensionalities of the datasets, in accordance with the

Seurat guidelines. Lastly, cell clustering was done using the
FindClusters and FindNeighbors functions, and the function
RunUMAP with default parameters was used for nonlinear
dimensional reduction.

Multiple dataset integration

For the comparative analysis of the cells present and their
proportions in the samples, the integration procedures
provided in the Seurat documentation at https://satijalab.
org/seurat/v3.0/integration.html44 were used. Specif-
ically, different datasets were integrated using the Seurat
package (v.4.3.0) to create an unbatched and integrated
dataset.

In a concise summary of the procedure, 2000 features
that varied significantly between cells were identified, as
described above. Subsequently, “anchors” between the
specific datasets were pinpointed using the function Fin-
dintegrationAnchors. The anchors were then used to pro-
duce a batch-corrected expression matrix for all cells using
the function IntegrateData. This integration step facilitated
the seamless combination and analysis of cells from
different datasets.

Annotation of cell types and identification of
cluster markers

After reducing the nonlinear dimensions and the creation of
a two-dimensional projection of the cells using UMAP,
clustering of the cells was performed according to shared
characteristics. Markers for the clusters were identified
using the function FindAllMarkers. The clusters were an-
notated and categorized according to the presence of
markers linked to specific cell types. To maintain the
integrity of the analysis, clusters with two or more markers
were classified as double cells and were not used for
further analysis.

Identification of DEGs and their functional analysis

Differentially expressed genes (DEGs) were identified with
the function FindMarkers, using the default “Wilcox” test.
The false discovery rate was assessed using the Benjamini-
Hochberg method and filtering of DEGs was performed using
the criteria log2(fold change) > 0.5 and the false discovery
rate <0.01. The functional enrichments of the DEGs were
investigated using Metascape (www.metascape.org) with
the gene ontology (GO) biological process category.

Cell scores

Cell scores were employed to assess the extent of expres-
sion of specific gene sets by individual cells.?° 23 The initial
calculation of the scores was determined according to the
average expression of genes in a predefined set of individ-
ual cells. The control gene set represented a random se-
lection according to aggregate expression level bins, such
that the levels and oversizes were similarly distributed to
the gene set under consideration. The implementation of
this method, with default settings, was carried out using
the AddModuleScore function in Seurat. We specifically
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utilized gene sets for “Response to interferon (IFN)-o”
(GO:0035455), “Response to IFN-B” (G0O:0035456), “Acute
inflammatory response” (G0:0002526), and “B cell prolif-
eration” (G0:0042100) to evaluate the IFN-a/fB response,
inflammatory responses, and B cell proliferation,
respectively.

Pseudotme analysis of epithelial cells and cell-chat
signaling network analysis

Pseudo-timing analysis of CD4™ T, CD8" T, and B cells, as
well as myeloid cell subsets, was conducted using default
parameters in monocle3 software. The developmental
trajectories of the cells were inferred and the cells were
ordered according to transcriptomic changes. To assess
potential intercellular communication between immune
cells, we utilized the R package CellChat 1.6.1.%*

Statistics

The statistical methods, tools, and thresholds used for the
analyses are provided in detail in the Results, Methods, or
figure legends.

Results

Single-cell transcriptomic analyses of peripheral
immune cells in JIA

Droplet-based single-cell RNA sequencing of peripheral
blood mononuclear cells from 14 JIA patients and 4 HCs was
performed on the 10X Genomics platform. The 14 JIA pa-
tients were further categorized into five clinical subtypes,
namely, sJIA (n = 4), RF~ pJIA (n = 2), RF" pJIA (n = 2),
oJIA (n = 3), and ERA (n = 3) (Table S1). Employing a single-
cell analysis pipeline (described in the Methods), we ob-
tained 177,310 cells among all samples, 27,233 cells (15.6%)
originated from HCs, 39,494 cells (22.3%) from sJIA,
21,013 cells (11.9%) from RF~ pJIA, 24,136 cells (13.6%) from
RF" pJIA, 32,604 cells (18.4%) from oJIA, and 32,830 cells
(18.5%) from ERA. After the removal of poor-quality cells, an
unbatched integrated dataset was obtained.

After reducing dimensionality, the cells were clustered
and marker genes’ characteristics of 10 principal cell
types/subtypes were assighed (Fig. 1A). These cell types
encompassed CD4" (CD3D*CD4"), CD8" (CD3D"CD8A*
CD8B™), and natural killer (NK) (CD3D"NKG7*PRF1*) T
cells, as well as B (CD79A"CD79B*MS4A1™), plasma
(IGHG1TIGHATTJCHAIN™), NK cytotoxicity (NKG7 PRF17),
NK inflammation (NKG7"PRF17XCL1") cells, monocytes
(FCN1LILRB2LILRA5 "), monocyte-derived dendritic cells
(CD1C™), plasmacytoid dendritic cells (LILRA4T), and
platelets (PPBP™) (Fig. 1B). This provided a clear delinea-
tion of the present cell populations.

To elucidate disparities in cellular compositions at
two levels, JIA versus HC and non-sJIA versus sJIA, the
relative proportions of the 10 principal cell types
identified in peripheral blood mononuclear cells were
determined according to the single-cell RNA sequencing
data (Fig. 1C). At the JIA versus HC level, three cell

populations, monocytes, monocyte-derived dendritic cells,
and platelets, exhibited significant elevation in JIA
(Fig. 1D). Next, to explore the immune response in JIA
patients, enrichment in two GO biological process path-
ways, namely, response to IFN-o and acute inflammatory
response, were assessed in the cell types across the four
conditions (Fig. 1E), as the GO enrichment analyses of DEGs
in various subpopulations of JIA and HC showed that some
of the subpopulations’ enrichment results were involved in
IFN signaling (Fig. S1). We observed a uniform and signifi-
cant up-regulation in response to IFN-o. across most major
cell types from the peripheral blood of JIA patients, except
for monocytes and NK cells. Moreover, sJIA patients
exhibited notably heightened responses to IFN-o in nearly
all major cell types compared with non-sJIA (Fig. 1F).
Furthermore, within the selected cell types, the acute in-
flammatory response differed significantly and consistently
between the conditions. In comparison to HC, several cell
types in JIA demonstrated significantly heightened perfor-
mance in this process, with sJIA also exhibiting a significant
up-regulation compared with non-sJIA. These findings
indicate a more pronounced pro-inflammatory response in
JIA patients, particularly in sJIA versus non-sJIA (Fig. 1G).

In conclusion, for most immune cells in JIA, IFN disor-
ganization could be canalized and myeloid cells differed
markedly between HC and JIA. There were different IFN
disorders on most immune cells in the JIA.

Characteristics of CD4™ T cell subsets in JIA

To elucidate alterations in these subsets, CD4" T cells were
subclustered from peripheral blood mononuclear cells,
identifying five subsets according to the distributions and
expression of defined CD4" T cell markers (Fig. 2A, B):
naive CD4" (CD4* TN; CCR7TLEF1Y), effector memory CD4*
(CD4" TEM; ANXA1"), and T-helper type 1 (Th1; HLA-
DPB1tCCL5"GZMA™) T cells, as well as regulatory T cells
(Tregs) (FOXP31IKZF2™).

We then utilized Monocle3 to infer pseudotime trajec-
tories of the CD4" T cell subsets. We observed two distinct
trajectories: CD4™ TN cells connected to CD4" TEM cells,
which subsequently differentiated into two distinct cell
lines, Treg and Th1 (Fig. 2C). With the progression of
cellular trajectories, the regulation of various cytokines, T
cell proliferation, chronic inflammatory response regula-
tion, MHC class Il protein complex assembly, immunoglob-
ulin production, tumor necrosis factor-mediated signaling
pathway, cellular response to tumor necrosis factor, anti-
gen processing and presentation, platelet activation, posi-
tive regulation of receptor signaling pathway via Janus
kinase (JAK)-signal transducer and activator of transcrip-
tion (STAT), positive regulation of cytokine production, and
positive regulation of NF-«B signaling were enhanced in JIA,
while the cytoplasmic translations, rRNA processing, and
rRNA metabolism were weakened (Fig. 2E).

For further evaluation of transcriptomic alterations in
CD4* cells, CD4™" cell profiles were compared between sJIA,
non-sJIA, and HC cells. The greatest enrichment of DEGs
from the sJIA and non-sJIA groups was associated with the
regulation of intrinsic apoptotic signaling and VEGFA/
VEGFR2 signaling pathways.
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Figure 1  Single-cell transcriptomic profiles of PBMCs from JIA patients and HCs. (A, B) Identified cell populations. Eleven clusters
were found after UMAP clustering of JIA and HC cells. The dots indicate single cells with colors representing the cell type. (C) Violin
plots of expression of cell markers. (D) Relative proportions of cell subtypes in JIA and HC PBMCs. (E) Percentage of each cellular
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Delineation of CD8* T cell subsets and

transcriptomic changes in JIA

To delineate changes in CD8" T cell subsets, these cells
were subclustered from peripheral blood mononuclear

cells, leading to the identification of five subsets according
to the presence of specific markers for these cells (Fig. 3A,
B), namely, naive CD8" (CD8% TN; CCR7'TCF7TLEF1™),
effector memory CD8" (CD8" TEM; GIZMK'GZMM™),
recently activated effector-memory (CD8" TEMRA;
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Figure 6 Cellular communication between immune cells. (A, B) Numbers of receptor-ligand interaction pairs predicted by
CellChat in non-sJIA (A) and sJIA (B). (C) Numbers of predicted interactions and interaction strengths in non-sJIA and sJIA. (D)
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inhibitory factor.

CX3CR1*, FGFBP2", FCGR3A™), exhaustion-like CD8* (CD8*
TEX, with markers GZMA, GNLY, GZMB, and IFNG), mucosal-
associated invariant (TMAIT; SLC4A10, PRSS35, CCR6), and
gamma-delta (Ty3; TRDCH, TRGC2", and TRG-AS1™) T cells.

Furthermore, we extrapolated pseudotime trajectories.
We observed three distinct trajectories: the first involved
CD8* TN and y3T cells, the second encompassed CD8" TN,
CD8" TEM, and CD8" TEX, and the third included CD8" TN,
CD8* TEM, CD8" TEMRA, and CD81 TMAIT (Fig. 3C). As the
cell trajectories progressed, functional changes in sJIA T
cell-mediated cytotoxicity, MHC class Il protein complex

assembly, regulation of adaptive immune response, positive
regulation of leukocyte proliferation, tumor necrosis factor
production, type Il IFN production, regulation of type Il IFN
production, regulation of inflammatory response, and
regulation of NF-kB signaling were enhanced, whereas the
cytoplasmic translations, rRNA processing, and ribosome
biogenesis were weakened (Fig. 3E).

For further investigation of transcriptomic alterations in
CD8* cells, the profiles of CD8" cells were compared be-
tween the sJIA, non-sJIA, and HC groups. DEGs in sJIA and
non-sJIA patients with HC-involved genes related to VEGFA/
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VEGFR2 signaling. These DEGs of sJIA versus non-sJIA were
significantly enriched in pathways associated with regula-
tion of the inflammatory response, lymphocyte migration,
leukocyte-mediated cytotoxicity, and negative regulation
of T cell apoptotic processes. These results suggest that
sJIA has a stronger inflammatory response, lymphocyte
migration, and cytotoxicity than non-sJIA, and that
apoptosis of T cells is stronger in non-sJIA.

IFN production differs significantly between sJIA
and non-sJIA B cells

To elucidate the changes in B cell subtypes, these cells
were subclustered into four subtypes according to marker
expression (Fig. 4A, B), namely, the naive B
(MS4A1*IGHD™), memory B (MS4A17CD277), germinal cen-
ter B (MS4A17NEIL1™), and plasma B (MZB17CD38") subsets.

Cell proliferation scores were determined in the different
subsets. In naive, germinal center, and memory B cell sub-
sets, the scores were higher in non-sJIA versus sJIA (Fig. 4D).
In the pseudotime trajectories (Fig. 4C), we observed im-
mune response-regulating cell surface receptor signaling
pathway, positive regulation of cytokine production, tumor
necrosis factor production, cytokine-mediated signaling
pathway, response to tumor necrosis factor, type Il IFN
production, and regulation of type Il IFN production were
enhanced, while antigen processing and presentation of
exogenous peptide antigen via MHC class Il, leukocyte pro-
liferation, immunoglobulin-mediated immune responses,
and regulation of NF-«B signaling were weakened (Fig. 4E),
in contrast to those seen in CD4* and CD8™" T cells.

DEGs in sJIA and non-sJIA were involved in genes related
to VEGFA/VEGFR?2 signaling and IFN signaling. DEGs of sJIA
and non-SJIA patients were involved in IFN signaling,
consistent with that the response to IFN was different in B
cells and stronger in sJIA than in non-sJIA (Fig. 1). These
results suggest that VEGFA/VEGFR?2 signaling is linked to JIA
pathogenesis to some degree and that IFN may be one of
the factors that contribute to the different clinical mani-
festations of sJIA and non-sJIA.

Non-classical monocytes are present only in sJIA

To delineate changes in myeloid cell subsets, these cells
were subclustered from peripheral blood mononuclear cells
and classified according to markers (Fig. 5A), namely,
classical (CD14TFCGR3A™), intermediate (CD14TFCGR3A™),
non-classical (CD14 FCGR3A™) monocytes, monocyte-
derived dendritic cells (CD1C*FCER1A), and plasmacytoid
dendritic cells (LILRA4TCLEC4C™). Interestingly, non-clas-
sical monocytes are a group of cells that are only found in
sJIA (Fig. 5B). So, we did GO analysis of highly variable
genes in each of the three groups of cells, namely, classical,
intermediate, and non-classical monocytes.

We found that the top 20 entries in the classical monocytes
were mainly enriched for positive regulation of cytokine
production and the immune response, signaling by in-
terleukins, humoral immune response, complementation
system, regulation of inflammatory response, and platelet
degranulation (Fig. 5E). Intermediate monocytes were mainly
enriched in adaptive immune system, cellular response to

cytokine stimuli, hemopoiesis, negative regulation of cell
migration, innate immunity, positive regulation of apoptotic
process, inflammatory response, myeloid leukocytes,
platelet degranulation, inflammatory response, myeloid
leukocyte activation, IL-18 signaling pathway, myeloid cell
differentiation, and complement system, function like a
response to the function of classical monocytes (Fig. 5F).
Whereas non-classical monocytes were mainly enriched in
the innate immune response, IFN-y signaling, cellular
response to cytokine stimulus, negative regulation of immune
system process, type Il IFN signaling, NOD-like receptor
signaling pathway, positive regulation of programmed cell
death, regulation of inflammatory response, and glucocorti-
coid receptor pathway (Fig. 5G), appeared to be associated
with IFN, programmed cell death, and glucocorticoid recep-
tor pathway-related functions.

In the pseudotime trajectories (Fig. 5C), we observed
MHC class Il protein complex assembly, antigen processing
and presentation of exogenous antigen, leukocyte-medi-
ated cytotoxicity, positive regulation of cytokine produc-
tion, regulation of antigen processing and presentation,
response to type Il IFN, and type Il IFN production were
enhanced, while tumor necrosis factor production, regula-
tion of tumor necrosis factor production, and positive
regulation of NF-kB transcription factor activity were
diminished (Fig. 51). This implies that the production of IFN
by non-classical monocytes might have a role in the gen-
eration of sJIA which needs to be further explored.

Cell—cell interaction network analysis using
CellChat

CellChat was used for analysis of interactions between the
identified cell types (Fig. S2). Notably, interactions of CD4*
and CD8"' T cells, B cells, monocytes, and NK cells with
other cell populations were abundant in both sJIA and non-
sJIA cases (Fig. 6A, B). Macrophage MIF was widely present
in individual cells.

There is a greater number of inferred interactions in sJIA
than in non-sJIA (Fig. 6C). In relative information flow, CCL,
RESISTIN, GRN, and GALECTIN were mainly enriched in non-
sJIA, and IL1, FLT3, MIF, and PARs were mainly enriched in sJIA
(Fig. 6D). The CD74—CXCR4 and CD74—CD44 pairs were
expressed in both sJIA and non-sJIA in MIF, but intriguingly, a
new ligand—receptor pair, CD74—CXCR2, appeared in sJIA,
whose ligand CXCR2 was expressed only in monocytes (Fig. 6E).

Discussion

JIA is an arthritis occurring in children, and the sJIA and
non-sJIA subtypes were analyzed in the present study. sJIA,
in particular, stands out not only in clinical presentation but
also in its pathogenesis, representing a potential polygenic
autoinflammatory disease involving interconnections be-
tween innate and adaptive immunity.?®> The early stages of
the disease are marked by innate immunity-driven systemic
inflammation. In contrast, non-sJIA is characterized by
generalized joint involvement, with some patients facing
an elevated risk of chronic iridocyclitis development. While
studies have analyzed innate and adaptive immune re-
sponses individually, there is no comprehensive evaluation
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of the underlying molecular and cellular pathways involved
in JIA. Here, a comprehensive single-cell analysis of JIA was
performed, demonstrating the changes in cellular response
associated with the progression of the disease and the
identification of associated factors.

It was found that a significant portion of cellular re-
sponses to IFN exhibited a decrease. Conversely, in sJIA,
IFN responses were heightened compared with non-sJIA.
IFNs are pivotal immunomodulatory molecules orches-
trating immune responses, combatting infections, and
regulating inflammation. Individuals with JIA may display a
diminished response to IFNs, potentially a consequence of
immune system dysregulation. This diminished response
might impair the immune system’s ability to effectively
combat infections or inflammation, thereby exacerbating
the condition in individuals with JIA. This phenomenon is
likely intricately linked to the pathophysiological mecha-
nisms of JIA, possibly arising from abnormal immune cell
function, disrupted signaling pathways, or insufficient im-
mune regulatory factors. sJIA, a specific subtype of JIA, is
characterized by an immune system activation triggering a
systemic inflammatory response. As the disease progresses,
immune cells significantly amplify their response to IFNs.
Consequently, an elevated response to IFNs is evident in
patients with sJIA. This phenomenon is closely associated
with the immune system’s activation state, the severity of
inflammation in the disease, and the pathophysiology. It
might signify a specific immune response to the disease,
potentially modulating inflammation and immune responses
to contend with disease progression.

IFN functions as a signaling protein synthesized and
secreted by cells, belonging to three cytokine families.?®
Upon specific binding to its cell membrane receptors, IFN
activates the IFN signaling pathway, thereby inducing
various IFN-stimulated genes. This activation is important
in the modulation of the cellular immune system.?” A study
concentrating on rheumatoid arthritis has discerned
increased mRNA levels of IFN effectors in inflammatory
cells, suggesting the involvement of IFN in the autoimmune
response associated with rheumatoid arthritis. Notably,
osteoclasts significantly contribute to irregular bone
resorption, a phenomenon implicated in various bone dis-
eases, including rheumatoid arthritis. Research indicates
that Interferon-induced protein with tetratricopeptide re-
peats 1 (IFIT1) modulates receptor activator of nuclear
factor kB ligand (RANKL) via STAT3 signaling, thereby
facilitating osteoclast formation.?® Moreover, the observed
increases in responses to IFN and acute inflammation in sJIA
versus non-sJIA align with clinical characteristics. In the
results of cellular communication, we observed that sJIA
had one more ligand—receptor pair, MIF (CD74—CXCR2),
than non-sJIA.

MIF acts as a pleiotropic pro-inflammatory cytokine
involved in the modulation of both innate and adaptive
immunity. It is associated with several autoimmune dis-
eases, such as rheumatoid arthritis and systemic lupus er-
ythematosus. Specifically, ligand—receptor pairs, such as
MIF (CD74—CXCR4) and MIF (CD74—CD44), indicate the
importance of CD44 in epithelia, cell proliferation, and
certain cancers. The ectodomains of the protein promote
migration through the extracellular matrix through in-
teractions with growth factors, such as fibroblast growth

factor, and matrix metalloproteinases.?’ Cellular prolifer-
ation is important in the chronicity of arthritis, with acti-
vation and proliferation of B cells contributing to the
progression of the disease to a chronic status. Here, greater
B cell proliferation was seen in non-sJIA versus sJIA, cor-
responding to the increased severity of joint symptoms in
these patients. Animal studies using collagen-induced
arthritis as a rheumatoid arthritis model found that the
severity of rheumatoid arthritis was reduced in the absence
of MIF. This model causes inflammatory arthritis charac-
terized by autoantibodies against collagen Il driven largely
by T cells. This aligns with our results and demonstrates the
importance of MIF in these diseases.>* 32 MIF has also been
implicated in the pathogenesis of human systemic lupus
erythematosus.>*> The identification of the emerging
ligand—receptor pair MIF (CD74—CXCR2) in sJIA may serve
as an indicator to distinguish sJIA from non-sJIA.

In conclusion, this is the first characterization of the
single-cell profiles of different subtypes of patients with
primary JIA in a large sample size. We found that the
myeloid cell population communicated more frequently
with other cells in JIA than HC and that its subpopulation,
non-classical monocytes, was present only in sJIA but not in
non-sJIA. Moreover, the monocytes in sJIA showed a new
ligand—receptor pair MIF (CD74—CXCR2) that was not
observed in non-sJIA; and perhaps the expression of this
receptor-ligand pair may help us to identify sJIA and non-
sJIA.

Our findings hold significant implications for the precise
diagnosis and classification of JIA, offering a foundation for
future targeted therapies. By uncovering subtype-specific
immune mechanisms, this study provides valuable insights
that could guide the development of personalized treat-
ment strategies for JIA patients. Although the number of
cases in each subtype is relatively small, the high resolution
and granularity of single-cell transcriptomics allow us to
identify meaningful differences in immune cell populations
and pathways between JIA subtypes. We are currently
enrolling additional patients and performing detailed sub-
type analyses to enhance our understanding of JIA hetero-
geneity and optimize therapeutic strategies.
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